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R.C.A. AERODYNAMIC DESIGN
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« Il  y  a  un édifice  immense dont  j'ai  posé le  fondement  de  mes  
mains : il était solide et simple, tous les hommes pouvaient y entrer  
en sûreté ; ils ont voulu y ajouter les ornements les plus bizarres,  
les plus grossiers, et les plus inutiles ; le bâtiment tombe en ruine  
de tous les côtés ;  les hommes en prennent les pierres, et  se les  
jettent  à  la  tête ;  je  leur  crie :  Arrêtez,  écartez  ces  décombres  
funestes qui sont votre ouvrage, et demeurez avec moi en paix dans  
l'édifice inébranlable qui est le mien. »

(Voltaire – Traité sur la tolérance)
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1.Summary

This  document contains  some useful  information and mathematical  models and methods for  a r.c. 
model autogyro design.  The task is  doing a simple and useful  paper for radio controlled autogyro 
design. The author strictly warns to use this paper and all its contents for r.c. models only.
In chapter #2 I discuss the characteristic lay-out for a classic forward traction autogyro. So we can plot 
a generic drawing of autogyro. 
In chapter #3 there is an explanation taken essentially from Leishman and Glauert about the autogyro 
aerodynamics, with some drawings to easily understand this machine flying principles and problems.
In chapter #4 I discuss the typical parameters of disc specific load and power consumption, so we can 
decide the disc size, the solidity and the engine size. 
In chapter #5 there are some mathematical model blades with a classic approach from the structural 
matrix theory. 
In chapter #6 computational analysis of the autogyro blade was performed by software made by the 
author working under Scilab-Inria. 
In chapter #7 is analyzed in detail a typical flexible hub.
In chapter #8 is analyzed the good effect of a delta-hub rotor.
In chapter #9 there's an analysis on the rotor flutter stability. 
In chapter #10 there is an investigation on vehicle stability during flight.
In chapter #11 there's a synthesis of ideas, in order to do a consistent design.
Conclusions are in chapter #12 and some notes in the appendix, bibliography A1, software list A2 and 
some notes about final flying tests A3.
In A4 there are some notes about the author and general information about this work.

Chapters have been written in detail increasing, and also as stand-alone parts. The aim of this work is to 
give suggestions to all the modeler friends of mine, who want to design and build their own gyros. 

Also reading only the chapter #2 should be enough to construct something good without having a  ph.d. 
in mathematics. If somebody is crazy for science, there are a lot of things in the following chapters of 
intrest. My intentions have been to collect, synthesize and making available for modelers, all the lost 
(intentionally hidden?) information for understanding and building-up with conscience a good gyro 
model. 

The choice of English has been done intentionally for the best comprehension and diffusion of this 
paper.

Special thanks to Doctor Josef Trchalik – Univesity Of Glasgow, who supported and encouraged this  
work.
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2.Geometric Lay-Out

In this chapter there is a collection of general information on the classic geometry proportions of a r.c.  
tractor style no-winged model autogyro.
In simple words, the autogyro depends on an initial  angle of attack of the rotor.  While it  remains 
positive, an average of 10°, lifting force is produced by blades lifting foils. Note that this kind of profile 
(for an autogyro is typically a NACA 8H12), is different from the helicopter blades symmetric profile. 
In order to control the direction and the lift of our autogyro, we tilt the rotor disk by servos action 
(direct servo controlled autogyro). With the elevator and rudder, we can perform the same action as 
well togheter with the disk action (tail controlled autogyro).
All the values and the parameters reported here below offer a good beginning in general.  We consider 
the drawing #2.1 here below.

-2.1-
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A – Engine down thrust angle – 5° (typically from 3° to 8°)

This angle is necessary to counterbalance the rotor drag which is high above the horizontal centerline 
and center of gravity.
A higher amount of A, e.g. 10° or more is most probably due to an excessive disk height. This causes 
an increasing of the drag force that needs to be counterbalanced by a higher angle A. If the rotor disk is  
placed lower, it reduces the angle A to 5°- 8°.

B – Mast angle – 10° (typically from 6° to 14°)

It seems that B depends on the stabilizer installed, size, position and profile, as well by A angle and the 
C.G.  position.  With  a  trusting  tail,  angle  B  increases.  With  a  neutral  profile  stabilizer,  angle  B 
decreases. Sometimes it needs a slight correction of the neutral mast angle. It depends also from the 
Engine down thrust angle. The more the down trust angle, the more the mast angle results.

C – Rotor disk height

Roughly same as E, but not more than E. Somepeople says 25% more than E. One finding is that the  
higher the rotor (vertically), the more stable the model, however the less handling, it  may possibly 
resist  a turn.  On the other  hand,  the lower the rotor height,  the more maneuverable the model  is. 
Generally speaking, a model with a very high rotor position is requires coordinate rudder assistance to 
complete a turn. With totally direct control fins models (without rudder and elevator), the rotor height is 
more critical for reaching a coordinated flight, therefore these kind of models are more difficult to  
design and fly.
The main advantage of a direct control model (tilting rotor) is more controllable over all its speed 
range. It can also be controlled down to zero forward airspeed, compared to a rudder/elevator and no 
tilting rotor.  

D – Rotor disk diameter

It is enough to obtain a disk specific load of less than 15 g/dm2 (5 ozs/ft2). With specific loads more 
than 15 g/dm2, they will experience problems with hovering, a longer ground take off distance, and/or 
be more difficult to hand launch. Better models have 10-15 g/dm2 as specific disk loads.
To find and to predict the model flight, we discuss the typical parameters in chapter 4 to size the 
engine. Important note: a rotor diameter increasing causes also a drag increasing, so the right size of the 
rotor is important and shouldn't has to be changed out of the given specific disk load range.

Ing. Bruno Zilli 6-53
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 Rotor disk solidity

In simple word it's the number of blades we're using for our rotor. Three or four blades is the working  
solution.  Actually  the  number  of  blades  isn't  critical  for  model  performance.  Notice  that  the  rpm 
decreases with the more blades we add.
The model autogyro could work with only one well balanced blade, but it isn't a good solution because 
of the higher launch spinning rotational speed. Usually there are two or more. Three is a very good 
design, four is finer for bigger models and for rotor efficiency (lift). Four blades seem to add some 
more stability to the model (because of a little bit more rotor inertia).
A good idea would be to make some extra blades more when we're building our model, because sooner 
or later we're going to have to replace them.

Rotor blade aspect ratio

10:1 is a good design. A good range is from 8:1 to 12:1. The blade thickness should be less than 16% of 
the chord-width. Blades with more than 16% are difficult to spin at the take off.
The best thickness should be form 13% than 16% of the chord length.
It's better to have a narrow leading edge radius, with a thin trailing edge. For model gyros clark Y-W-K 
bottom flattened have been used with success. 
A good way is the bottom flattened clark-YS with a slightly reflexed trailing edge. This is done to 
prevent the bending down (tuck-under) of the leading edge.
The SG6042 is a very good airfoil and so is the well known NACA 8H12 universally known as the 
autogyro profile.

E – Prop to mast

Roughly equal to C, to be kept short just to balance the model forward to the rotor shaft. To achive a 
stable model the rotor is normally placed higher than the length of the nose. If we're dealing with with a 
direct controlled rotor to control the model, a longer nose makes turning a model more difficult.
The nose length C has to be kept as short as possible also for weight balancing problems.

Center of gravity (C.G.)

The model needs to be balanced just  forward of the rotor shaft  (as winged models is  the stability  
margin) and above the fuselage line. Commonly happens that the C.G. is a point where it's difficult to 
hold the model. To find out if the model is balanced well or not, we hold the model from the rotor shaft 
and we observe the nose down aptitude from a horizontal line. This hang angle has to be from 5° to 
10°.  The greater this angle, the heavier the model flight but stable is more. Important: models with the 
C.G. under the rotor will be extremely sensitive in both pitch and roll. A tractor style autogyro with a 
small or no hang angle won't assume a nose down glide position with engine failure and thus will be 
virtually uncontrollable. 
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F- Rotor to tail distance

Normally, F is double the distance of E. Unnecessary tail extension causes problems as stated above for 
a nose extension. Once the rotor is sized, the tail fin will be placed  just aft of the rotor max radius 
(more than 1/2” or 1”). If the fuselage is thin enough to flex during landings, additional clearance may 
be needed. 

G – Vertical fin area and horizontal stabilizer area

It's approximately 2.0 to 3.5% of the rotor disk area and approximately 45 to 55% of the horizontal  
stabilizer area.  This parameter will vary greatly depending on the particular design. The tail feathers 
need to be kept close (but allow at least 1/2 to 1”) blade tip clearance.
Extending the tail well aft of the model may increase its stability, however decreases its aptitude to 
complete a coordinated turn without the need for lots of rudder assistance.
Horizontal stabilizer area is approximately 5 to 8% of the rotor disk area. Normally if the rotor is servo  
controlled, and elevator plus rudder control is not used, the tail can be slightly smaller in size.

These topics (vertical fin and stab area with stability) will be discussed in detail in chapters #10.

H – Rotor pitch control limits - ± 8°

Roll lateral control limits - ± 7°

These values are applied to direct controlled rotor models, that seem to be more sensitive in roll than in 
pitch. Due to the specific autogyro design, an extra lift could be found on the left part of the rotor 
(watching model from behind), for a c.c.w. rotor.
It means that we must provide some more servo excursion for left turning, this before initial flight tests.
This topic (lifting asymmetry) will be discussed in detail in chapter #3.

Engine power

The generally acceptable requirement is a thrust to be equal at least to half of the weight of the model.
A thrust of 75% the model weight would be better. Ratio 1:1 isn't necessary.

Ing. Bruno Zilli 8-53
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3. Autogyro General Theory

Dimensions of blades

B = Number of blades.
θ(r) = aerofoil blade section angle of pitch.
R = extreme radius.
A = Disk rotor area.
r = radius of the blade element.
c(r) = chord of blade element.
h(r) = ordinate from base line
χ(r)  = slope of blade element
W1 =  g*mass (weight) of one blade, g is 9.81 m/s2.
G1 = g*mass (weight) moment to hinge.
I1,J1 = moment of inertia and product of inertia.

Motion of blades

Ω = angular velocity of shaft.
ψ = angular position of blade.
β = angular rotation of blade around its hinge.
β = β0 – β1 cos(Ψ – Ψ1).

General motion

i = angle of incidence of autogyro - disk rotor theory (mast angle 
if horizontal flight).
αHP = rotor hub-plane angle with relative wind in detailed rotor 
theory.
αTPP = rotor tip-path-plane angle with relative wind in detailed 
rotor theory.
V = forward speed.
vi = axial induced velocity.
vh = hovering induced velocity.
V* = resultant of V and v.
u = axial velocity through disc.
Vc = climbing velocity.
U = resultant velocity relative to blade element.
Φ = slope of U.
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Forces 

W = total weight.

w=
W

πR2
specific disc load.

T = thrust.
D = drag.
Y = lateral force.
L = lift.
Q = torque.

Coefficients

CT=
T

πR2 ρ Ω2 R2
thrust coefficient

 k D=
D

πR2 ρ V 2

kL, kD = lift and drag coefficients of blade element in disk rotor theory.
Cd and Cl = lift and drag coefficients of blade element in the detailed rotor theory.

δ = mean profile drag coefficient.

 σ=
Bc
πR

 solidity.

 μ=
Vcos α 

ΩR
rotor advance ratio

 χ=
u

ΩR

ζ=
8
3

θ2


17
2

θχ
15
2

χ2

ξ, η1, η2 = coefficients of the blade curvature.
ε, μ1, μ2 = coefficients of the blade density.
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Ing.  Juan  De  La  Cierva  stated:”..the  wings  of  such  an  
aircraft should be moving in relation to the fuselage. The  
only  mechanism  able  to  satisfy  this  requirement  is  a  
circular motion and, moreover, in order to give adequate  
security  to  the  aforementioned  requirement  it  must  be  
independent of the engine. It was thus necessary that these  
rotary wings were free-spinning and unpowered...”.

The  autogyro  rotor  always  operates  in  the  auto  rotative 
working state,  where  the  power  to  turn  the  rotor  comes 
from a relative flow that  is  directed upward through the 
rotor disk. An autogyro rotor has got a low disk loading 
(T/A). This means a small upward flow normal to the tip-
path plane is necessary to produce auto rotation. Therefore. 
In  straight-and-level  forward  flight  the  rotor  needs  to 
operate only with a slight positive angle of attack (i). The 
loss of engine is never a problem on an autogyro, because 
the rotor is always in the auto rotative state. The machine 
will descend safely.
Auto rotation can be defined as a self sustained rotation of 
the  rotor  without  the  application  of  any  torque  Q  =  0. 
Under  this  condition  the  air  stream  gives  the  rotor  the 
necessary  energy  to  rotate.  This  air  stream  is  directed 
upward  through the rotor.

The  use  of  an  integral  method  affords 
considerable  mathematical  simplification, 
but means only what happens before and 
after the rotor disk. It gives no information 
on what happens at the blade level.
If Qh is the torque needed for a rotor in 
hovering  state,  Vc the  climbing  velocity, 
vh the induced velocity in hovering state, 
vi the induced velocity, it is:

Glauert gave a first measure of vi, if i (incidence) and T are small.

Ing. Bruno Zilli 11-53
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Vc
vh

is proportional to the rotor potential energy change and 
vi
vh

is proportional to the aerodynamic 

losses.

The solution for 
vi
vh

depends on the operating state. For a climb the solution is:

and for descending flight

the latter equation being valid only for 
Vc
vh

−2 . 

The result for 
Q
Qh

are reported in fig.  3-1 in the 

form of a non dimensional curve. 

Notice that there is no exact theory to describe the 

flow in the region  −2
Vc
vh

0 (which includes 

the auto rotative state), and the nature of the curve 
is  obtained  empirically.  It's  important  that  in  a 

descent  at  least  above  a  certain  rate  
Vc
vh

,  the 

rotor is driven by air. 
      

There is a value of  
Vc
vh

for which no net torque is required at the rotor, that is, when the curve 

crosses the auto rotational line Vc + vi = 0. So that, or 
Q

Qh
= 0. 

This condition is usually called ideal auto rotation, (ideal) although because the nature of this curve is 
empirical, it includes non ideal losses. 

This condition occurs when the rotor is descending vertically at 
Vc
vh

≈−1.75 .

Caused by the profile losses, the real auto rotation in vertical flight occurs at slightly higher rate than 
this. In an actual auto rotation condition this is: 

Q=
T
Ω
VcviQ0=0

It will  be apparent then that when in a stable “gliding auto rotation” with a constant airspeed and 
constant rotor rpm there is an energy balance where the decrease in potential energy of the rotor TVc 
just balances the sum of the induced and the profile losses of the rotor.
De La Cierva explored this idea at the beginning of his experiences with autogyros. 

So we've got:
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vi
vh

=−
Vc
2vh

  Vc
2vh


2

−1 vi
vh

=−
Vc
2vh

− Vc
2vh


2

−1

P=QΩ=T Vcvi=0

Vc
vh

=
−vi
vh

−
Q0Ω
Tvh
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The term second on the right of this last equation varies form 0.04 to 0.09, depending on the rotor 
efficiency. This is the profile drag of the rotor. 

Profile drag depends on rotor solidity σ = 
Bc
πR

and the drag of the airfoil section used on the blades.

So we can decide that this term 
Q0Ω
Tvh

of extra rate of descent required to overcome profile losses is 

relatively small than the first one. So have that a real vertical auto rotation of the rotor will occur for 

values −1.85
Vc
vh

−1.8 .

So we've for 1.85: Vd≈1.85 T
2ρA

 at sea level.

Glauert also proposed the idea that an autogyro works like having a circular wing at a certain 
angle of incidence i (disk theory). 

If we don't consider the periodic terms (due to the rotor swinging), we've from Glauert:

W≈T=B cΩ2 R3
θ

3
2

χ =
1
3

kL B cΩ2 R3 where χ=θ3
2

δ−θ under the assumption that

 kD =  δ   or  CT=
1
3

σ kL and

The following table gives kL for a suitable range of values of θ and δ (from Glauert).

From Leishman- Also of interest is the auto rotational rate of descent vs the rotor disk angle of attack. 
Auto rotation is also possible in level flight with propulsion to drive the auto giro forward. All that is  
required is that the rotor disk be held at a sufficient angle of attack such that the component of the  
relative wind upwards through the disk causes the rotor to auto rotate.  In the words of Juan de la 
Cierva, “It makes no difference at what angle the Auto giro is climbing or flying. The blades are always 
gliding toward a point a little below the focus of forward flight. Its is impossible, therefore, for auto 
rotation to stop while the machine is in movement.” 
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Reproduced from Leishman
The results in the opposite figure show the 
measured  hub plane  angle  of  attack  as  a 
function of the resultant non dimensional 
velocity of the aircraft. 
In a pure vertical descent it is apparent that 
the tip-path plane and hub plane angles of 
attack are both 90 deg. (The resultant wind 
is  perpendicular  to  the disk.)  As forward 
speed builds, the hub plane needs to make 
a  progressively  smaller  angle  to  the 
relative wind to enable auto rotation until 
at  higher  speeds  the  rotor  must  be  held 
only at a shallow angle to produce enough 
lift in the auto rotational state. 

The rotor tip-path plane angle is also inclined back, but is not equal to the hub plane angle of attack 
because of blade flapping (see next figure and also later discussion). The natural tendency to produce 
longitudinal flapping β1c with forward speed increases the component of velocity upward through the 
disk, which means the hub plane angle is always small in forward flight. The tip-path plane has a 
positive angle of attack much like a wing under these conditions, and, as Glauert was to show, the 
aerodynamics of the rotor are very much like a fixed-wing of circular planform under these conditions. 
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There  are  a  number  of 
combinations of rotor operating 
conditions where the net torque 
on the rotor shaft could be zero. 
Consider the flow environment 
encountered at a blade element 
on  the  rotor  during  auto 
rotation, as shown in the figure 
on the left.  For auto rotational 
equilibrium at  that  section,  the 
inflow  angle  φ  must  be  such 
that  there  is  no  net  in-plane 
force  and,  therefore,  no 
contribution to rotor torque, that 
is, for force equilibrium 

However, this is an equilibrium condition that cannot exist over all parts of the blade, and only one 
radial station on the blade can actually be in auto rotational equilibrium. In general, some portions on 
the rotor will absorb power from the relative air stream, and some portions will consume power, such 
that the net torque at the rotor shaft is zero, that is, dQ = 0. With the assumption of uniform inflow over 
the disk, the induced angle of attack at a blade element is given by: 

It follows that for auto rotational equilibrium the induced angles of attack over the inboard stations of 
the blade are relatively high, and near the tip the values of φ are relatively low. 

Ing. Bruno Zilli 15-53

dQ=D−φL ydy=0

D− φ L=0=Cd − φCl

φ=
Upflow velocity
Inplane velocity

=arctan 
∣Vcvi∣

Ω


ydy≠0
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One finds that at the inboard part of the blade the net angle of attack results in a forward inclination of 
the sectional lift vector, providing a propulsive component greater than the profile drag and creating an 
accelerating torque, a fact known by De la Cierva. This blade element can be said to absorb energy 
from the relative air stream. Toward the tip of the blade where φ is lower, these sections of the blades  
consume energy because the propulsive component as a result of the forward inclination of the lift 
vector is insufficient to overcome the profile drag there, that is, a decelerating torque is produced. 
As De la Cierva understood, in the fully established auto rotational state the rotor rpm will adjust 
itself until a zero torque equilibrium is obtained. This is a stable equilibrium point because it can be 
deduced from last figure above that if Ω increases φ will decrease and the region of accelerating torque 
will decrease inboard, and this tends to decrease rotor rpm again. Conversely, if the rotor rpm decreases 
then φ will increase, and the region of accelerating torque will grow outward. Therefore, when fully 
established in the auto rotative state the rotor naturally seeks to find its own equilibrium rpm to 
any changing flight conditions. This is an inherent characteristic of the rotor that gives the autogiro 
very safe flight characteristics theoretically. However, in the auto rotational state the blade pitch must 
always be at a low value, and the disk angle of attack must be positive to ensure that the inboard blade  
sections never reach high enough angles of attack to stall. Stall can occur if the rotor rpm goes below 
an acceptable threshold, such as when the disk angle of attack becomes negative, or a negative load 
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factor is produced. These are flight conditions to be avoided. If stall  does occur, then the outward 
propagation of 

stall from the blade root region will tend to quickly further decrease rotor rpm because of the associated 
high profile drag. The phenomenon of auto rotation is often explained using an auto rotational diagram.

 

This is shown in the figure above, where the blade section Cd /Cl is plotted vs angle of attack at the 
blade section. For a single section in equilibrium, 

For a given value of blade pitch angle θ and inflow angle φ, the preceding equation represents a series 
of points that form a straight line, which is plotted on the diagram above. The intersection of this line 
with the measured Cd/Cl data for the airfoil sections comprising the rotor blades at point A corresponds 
to the equilibrium condition where φ = Cd /Cl . Above this point, say at point B, φ > Cd /Cl , so this 
represents an accelerating torque condition. Point C is where φ < Cd /Cl , and so this represents a 
decelerating torque condition. Note that above a certain pitch angle, say θmax, equilibrium conditions 
are not possible, so for point D stall will occur causing the rotor rpm to quickly reduces, an issue 
alluded to earlier. 
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When a rotor operates in forward flight with the rotor passing edgewise through the air, the rotor blades 
encounter an asymmetric velocity field (see figures below).  

The blade position can be defined in terms of an azimuth angle ψ, which is defined as zero when the 
blade  is  pointing  downstream.  The  local  dynamic  pressure  and  the  blade  airloads  now  vary  in 
magnitude with respect to blade azimuth, and they become periodic (primarily) at the rotational speed 
of the rotor, that is, once per revolution or 1/rev. It will be apparent that the aerodynamic forces must  
reach a maximum on the blade that advances into the relative wind (i.e., at ψ = 90 deg), and will be 
minimum on the blade that retreats away from the relative wind (i.e., at ψ = 270 deg). For blades that 
are rigidly attached to the shaft, the net effect of these asymmetric aerodynamic forces is an upsetting 
moment on the rotor. This was de la Cierva’s first dilemma in developing the autogiro. 
It will be evident that the distribution of lift and induced inflow through the rotor will affect the inflow 
angles φ and angles of attack at blade sections and, therefore, the detailed distribution of aerody- 
namic lift and drag forces over the rotor. This subsequently affects the blade-flapping response, and 
therefore the aerodynamic loads. This interrelated behavior is a complication with a rotating wing that 
makes its thorough analysis relatively difficult, a fact well appreciated by De la Cierva and is still the 
subject of much research today. 
Notice also from figure above right that at higher forward speeds (advance ratios) a region of reverse 
flow (and stall) will form at the root of the retreating blade, increasing rotor profile drag and reducing 
aircraft performance. 
De la Cierva’s first Autogiro, the C-1, was built in 1920 and had a coaxial rotor design. He was to build 
two more machines, both with single rotors, before he achieved final success with the C-4 in January 
1923. The problem of asymmetric lift between the advancing and retreating blades was well known to 
De la Cierva. His first idea of using a counter-rotating coaxial design was that the lower rotor would 
counteract the asymmetry of lift produced on the upper rotor, thereby balancing out any moments on 
the aircraft. However, when flight tests began it was found that the aerodynamic interference between 
the  rotors  resulted  in  different  auto  rotational  rotor  speeds.  This  spoiled the  required  aerodynamic 
moment  balance,  and  the  C-1  capsized  before  becoming  airborne.  De  la  Cierva  considered  the 
possibility of mechanically coupling the rotors to circumvent the problem, but this was quickly rejected 
because of the obvious mechanical complexity and significant weight penalty. Despite its failure to fly, 
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however, the C-1 proved that the rotors would freely auto rotate when the machine was taxied with 
sufficient forward speed. The next Cierva design was the compensating rotor,  which was tested in 
three-bladed form on the C-3 in 1921 and in five-bladed form on the C-2 in 1922. (The C-2 actually 
followed the  C-3.)  This  idea used blade twisting in  an attempt to  compensate  for  the  undesirable 
characteristic of asymmetric lift, that is, by using nose-down twist on the advancing blade and nose-up 
twist on the retreating blade. Photographs of these two machines show a series of cables attached to the 
trailing edges of the blades, with the idea that the blade twist could be changed in a cyclic sense as the 
blades rotated about the shaft. However, although the basic principle was correct the concept proved 
impractical, and both the C-2 and C-3 were only to achieve short hops off of the ground. Perhaps the 
use of cyclic blade feathering (as opposed to blade twisting) might have been more successful, but it 
was not to be until 1931 that E. Burke Wilford in the United States demonstrated this concept on an 
auto giro. NACA was also to study this type of rotor in wind tunnel.

Based on his many experiments with small models, De la Cierva noticed that the flexibility of the rattan 
spars  on his  models  provided different  aerodynamic  effects  compared to  the relatively rigid blade 
structure used on his full-scale machines. This was the key De la Cierva needed and his “secret of 
success.”  His  fourth  machine  (the  C-4),  therefore,  incorporated  blades  with  mechanical  hinges 
(horizontal pins) at the root, which allowed the blades to freely flap up and down in response to the  
changing asymmetric aerodynamic lift forces during each rotor revolution (see schematic in the figure 
below). 

Also  acting  on  the 
blades  are  centrifugal 
and  gravitational 
forces, 
and as a result of free 
flapping  there  are 
inertia  and  Coriolis 
forces 
to contend with, all of 
which act through the 
center of gravity of 

the blade. The blades on 
the  C-4  were  restrained 

by cables attached to the shaft to limit both lower and upper flapping angles, and also so the blades 
would not droop to the ground when the rotor was stopped. 
The principle of flapping blades had actually first been suggested for the application to propellers, 
apparently by Charles Renard, but the idea of hinged blades was formally patented by Louis Breguet in  
1908 and then by Max Bartha and Josef Madzer in 1913. Juan De la Cierva, however, must be credited 
with the first successful practical application of the flapping hinge to a rotor. From his various writings 
it does not seem that Cierva was aware of any of the earlier ideas of flapping blades. De la Cierva 
noticed that the incorporation of the flapping hinge eliminated any adverse gyroscopic effects and also 
allowed the lift forces on the two sides of the rotor to become more equalized in forward flight. 
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However,  de la Cierva’s  initial  avoidance of using a  lead-lag hinge to alleviate the in-plane blade 
Coriolis forces (resulting from the flapping motion) and in-plane blade motion was an oversight that he 
was ultimately to come to terms with (see later). 
In de la Cierva’s C-4 Autogiro of 1923, a single rotor with four independent, freely flapping blades was 
mounted on a long shaft above an Avro airplane fuselage. The blades were of high aspect ratio, similar 
to those of modern helicopter blades, and used a relatively efficient Gottingen 429 airfoil shape. A 
propeller, powered by a Le Rhone gasoline engine, provided propulsion. The first model of the C-4 
used a lateral tilting of the entire rotor disk to provide roll control and without the use of any auxiliary 
“fixed” wings, which were later to be characteristic of most of his Autogiros. However, taxiing tests 
showed that the control forces involved in tilting the rotor were too high for the pilot, and the control 
response also proved very ineffective. The machine was subsequently fitted with a non- tilting rotor 
and a set  of ailerons mounted on a  stub spar projecting from the sides of the fuselage.  Pitch and 
directional (yaw) control on the C-4 was then achieved by conventional airplane surfaces,  with an 
elevator and a rudder used at the tail. 

The C-4 Autogiro first flew successfully on 
9 January, 1923 (see figure below-left) and 
made its first  official  flight demonstrations 
at  the  Getafe  Aerodrome in Madrid on 21 
January, 1923. On 31 January, 1923 at  the 
Quatro  Vientos  Aerodrome,  the  C-4  was 
flown around a 4-km 
closed circuit,  and this  was to  be the first 
time  any  flying  machine  other  than  a 
conventional airplane had accomplished this 
feat.  It took De la Cierva just  over a year 
between conceiving the idea of the flapping 
hinge  and  using  it  to  successfully  fly  the 
first autogiro. 
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This part should be read after the chapter n°5, but it would be better placed in the general theory.

Two main conditions have to be fulfilled during a steady axial flight in auto rotation; rotor thrust has to 
be in balance with the weight of the vehicle and the overall torque generated by the flow through the  
rotor disc has to be zero .

The thrust equation can be consequently used for calculation of rotor speed. The inflow ratio can be 
computed once rotor speed is calculated with the aid of the zero aerodynamic torque condition. An 
analytical or empirical relation between the vertical component of inflow velocity Up and the speed of 
descent Vd can be used to estimate the rate of descent of a rotor in auto rotation. This is equivalent to  
the relationship of thrust coefficient based on resultant air velocity F and thrust coefficient based on 
descending velocity f .

Several experimental measurements were carried out to determine the relationship  between 

and .  Reproduced from  Trchalik
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Nikolsky and Seckel also gives an analytical approximation of relationship between 

and .

A positive value of K corresponds to the windmill brake-state (i.e. the upper branch of F-curve) and a 
negative K indicates that the rotor is in the vortex ring state (VRS; the lower branch of F-curve) .

Rotor inflow ratio can be calculated (for the blade element, NB = number of blades) as :

Once the inflow ratio is calculated, the inflow speed can be obtained with the help of the following 
equations :

Note.  

The modified version by a classic Glauert's  model  

works quite well in my software.
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4. Typical parameters 

It's  clear that the auto rotative performance of an autogyro depends on several interrelated factors. 
These include the rotor disk loading (which affects the descent rate), the stored kinetic energy in the 
rotor system (which influences the probability of success of entry and completion of the maneuver), as 
well as “difficulty rating” flight assessment by pilots.
To help select the rotor diameter during predesign studies, an “autorotative index” is often used.
Although various types of typical numbers have been used, the A.I. is basically a stored kinetic energy 
factor. One form of the index can be defined in terms of the ratio of kinetic energy of the main rotor to 
the gross weight of the craft. That is (Sirkorsky),

where D.L. Is the disk loading, and Ir is the polar inertia momentum of the rotating disk In a general 
way, the lower A.I. is, the safest flight we obtain.
Example:

D.L.= 1,5 kg/m2 (15 g/dm2)
Ω = 21 rad/s (200 rev/min)
Ir = 0,125 kgm2

W = 15 N

A.I. = 12.25 (good result)

Now we introduce a useful way to determine the power needed by the autogyro in forward flight. We 
say the rotor total lift coefficient CL:

The rotor speed can now be estimated by assuming a control axis tilt less than 10° such that:

The rotor-drag lift ratio is defined as:
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We've  got from the chart below:
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The total drag is calculated as:

The parasite drag Dp is calculated from the coefficient Cpd and the forward speed V.  So the total drag 
Dt becomes:

We can give an estimation of Dp such as Dr/4.

The power required can now be calculated as: Preq=DV

The  calculation  of  the  propeller  thrust  comes  from  the  standard  Hamilton  method  with  some 
simplifications. 
For a given density ratio , the propeller coefficient Cp' is calculated as:

Where HP is the engine power, and at sea level.

From the figure below we evaluate a measure (at a tip speed of ≈270 m/s-900 ft/s) of the static thrust 
coefficient:
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The flight thrust as a function of the airspeed is found by the following relation:

We find the flight thrust to static trust ratio from the following chart:

Finally the propeller thrust available is:

For HP=0.5 Hp, N=12000 rev/min, d=0.2 m (prop diam), W=15 N, B=4, c=0.05, R=0.5, θ=4°, μ=0.25.

V
(km/h)

V
(m/s)

J

Cp
T
Ts

T Pav Cl Cl
σ


D
L
0 

D
L
i 

D
L
r

Dr Dp D Preq

60 16.7 1.23 0.85 1.8 N 31 W 0.09 2.83 0.07 0.02 0.09 1.35 N 0.3 N 1.65 N 27.5W

Ing. Bruno Zilli 26-53

Ts=
Ct
Cp


HP 0.93.3104

N 
d

0.3048


J

Cp
=2.84 V   N 

d
0.3048


3 ρ

ρ0

HP 107


Pav=T V



R.C.A. aerodynamic design a.s.d G.A.S.T. - Casarsa della Delizia (PN) - Italy

5. Mathematical Blade Models

Some parts of this chapter are from University of Glasgow - Trchalik -UK.

The mathematical  model  of the autogyro blades are  focused on the elastic  behavior  of the blades 
subjected to the lifting forces and inertial forces (centrifugal and Coriolis). The behavior of the blades 
during flight is well visible in the two pictures here below (Glasgow University - Trchalik).

Cierva’s  problems  with  excessive  torsion  of  rotor  blades  forced  designers  of  the  first  modern 
helicopters to use symmetrical (uncambered) airfoils. Better understanding of helicopter rotor dynamics 
allowed use of cambered, high-performance airfoils in later generations of helicopter designs .
Excessive  torsion  of  rotor  blades  was  avoided  with  the  aid  of  stiffer  rotor  blades  and  amended 
arrangement of blade hinges. A pitch-flap flutter is avoided by placing a mass balance at the blade tip.
Since the speed of gyroplane rotors is not mechanically restricted, it depends on aerodynamic loading 
of the rotor. Reflex camber airfoils are now used in the design of modern gyroplane rotors as they 
generate  positive  (nose-up)  pitching  moment  that  reduces  rotor  torque  and  hence  decreases 
aerodynamic  loading.  This  allows  establishing  of  a  balance  between  rotor  speed  and  span-wise 
distribution of blade incidence. 

In general, analytical methods required for modelling of the aerodynamics of auto rotating rotors are 
similar to those developed for helicopter rotors in powered flight. 
However,  several  modifications  have  to  be  made  in  the  blade  element  aerodynamic  model  of  a 
helicopter rotor in order to reflect different character of the aerodynamics of a rotor in auto rotation. 

As with helicopter rotor blades, rotor blades in autorotation are subjected to high vibratory loading for 
most of the time. The blades are also highly flexible. Structural loading can reach even higher values 
than in the case of helicopters since the blades can experience significant fluctuation of centrifugal 
stiffening due to decrease of rotor speed. Additional components of aerodynamic angle of attack that 
are caused by blade oscillatory motion have to be considered. This can be done with the aid of the 
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quasi-steady or the unsteady (Theodorsen’s) aerodynamic theory. The airflow around a rotor blade can 
be considered quasi-steady if the reduced frequency of blade motion is lower than 0.05. 
Reduced frequency is defined as follows: 

Classical formulations of quasi-steady lift and moment coefficient as given by Leishman  are :

α steady angle of attack [rad] 
 rate of change of angle of attack [rad/s] 

a = offset of the pitch axis from half-chord 
b = half-chord, b  = c/2

Vertical displacement of local blade sections wp is more consistent with the rotor coordinate system 
and rotor blade dynamics that were used in this work and in the model.
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Hence the classical formulations of quasi-steady lift  and moment coefficients generated by a blade 
section has to be rewritten in order to be consistent with the coordinate system orientation of the model 

Hence the equation can be written in a simpler form :

Where:

αq is the quasi-steady angle of attack [rad] and 
yEA is the local chord-wise position of elastic 
axis [m] . wp = wcosθ.

Local  values  of  vertical  and  horizontal 
components of the inflow velocity (U) have to 
be  calculated  in  order  to  determine 
aerodynamic  angle  of  attack  of  any  blade 
section.  The inflow velocity can be projected 
into three components (Up, Ut, Ur ). Vertical 
component of inflow velocity Up describes air 
speed of the flow in direction perpendicular to 
the rotor disc, Ut is parallel with the rotor disc 
plane and perpendicular to the longitudinal axis 
of the blade and Ur is parallel with both rotor 
disc   plane and the blade axis. 

       . 
Aerodynamic angle of attack of a blade section in auto rotation is 

In forward flight, however, the value of Ut can be negative in the reverse flow region of the rotor disc. 
In order to capture the reverse flow, the definition of inflow angle has to be modified. In a simpler way, 
the value of the inflow velocity can be calculated as :
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The inflow velocity is a function of angle of attack of the rotor disc that is given by a sum of incidence 
angle of the rotor disc i (i.e. angle between the rotor disc plane and the horizontal plane) and pitch 
angle of the vehicle. 

Referring to figure below analytical expressions of individual components of the inflow velocity of a 
gyroplane rotor can be formulated, including the effect of longitudinal and lateral rotor disc tilt (i and 
iL ) 
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Note that if the rotor disc incidence angle is zero, the flapping angle is assumed to be very small and 
the three expressions of Up, Ut and Ur are :

where:

The equations above represent the classical form of rotor inflow equations that have been broadly used 
for aerodynamic analysis of helicopter rotors in auto rotation .

Once  aerodynamic  angles  of  attack  of  each  blade  element  are  calculated,  they  can  be  used  for 
estimation  of  the  aerodynamic  loading  of  the  rotor  blades.  In  order  to  achieve  this,  relationships 
between  the  aerodynamic  angle  of  attack  of  blade  sections  and  lift,  drag  and  pitching  moment 
coefficients have to defined. 

This  can be done in several  possible  ways,  depending on desired accuracy of  estimation of blade 
aerodynamic loading. 
It  is more convenient to express the aerodynamic characteristics of the blade airfoil  as polynomial 
functions of angle of attack and Mach number. At least two different polynomials have to be used; the 
first  polynomial is  used for the area of angles of attack between α = -25deg and α = 25deg. The 
outboard sections of rotor blades (which generate a major part of the rotor forcing) operate in this range 
of angles of attack most of the time, and hence an approximation of this part of the lift and drag curves  
should be more accurate. The trend of both lift and drag curves outside this region can be approximated 
with the aid of simple trigonometric functions. 
It was shown by Prouty that it is possible to obtain the full-range angle of attack aerodynamic data of  
an  airfoil  with  the  aid  of  numerical  approximation.  Prouty  uses  NACA 0012  airfoil  in  his  book 
(Helicopter Performance, Stability and Control) as an example. This type of airfoil was widely used in 
the field of rotorcraft aerodynamics and an ample amount of experimental data are available for this 
airfoil.  Prouty’s amended compressibility correction :
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For NACA 0012, C1 = 0.1 deg-1 and C2 = −0.01 deg-1 . Prouty assumes that for a low speed airflow, the 
slope of linear part of NACA 0012 lift curve is cLα = 5.73 rad-1. 

For NACA 0012, C3 = 15 deg and C4 = −16 deg. 
Hence, for values of angle of attack lower than αL (linear part of lift-curve) and above αL , values of 
lift coefficient of the airfoil can be estimated as follows :

Prouty’s method of polynomial fit of airfoil drag curve was enhanced in order to capture the effect of 
reverse flow. 

In the reverse flow region:

For angles of attack below the stall, moment curve of NACA 0012 can be expressed in the following 
way (α rad) : 

We can only  estimate  the  cM,  because  the  Prouty  model  reported  on  Trchalik's  thesis  is  for  real 
applications, not for models.

M 0th order 1th order [rad−1 ] 2th order [rad−2] 

0.3 −5.319 · 10−5 −3.425 · 10−1 1.5213 · 10

M 3th order [rad−3] 4th order [rad−4] 5th order [rad−5] 

0.3 −1.875 · 102 9.468 · 102 −1.666 · 103 
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Once aerodynamic  coefficients  at  all  span-wise  stations  are  obtained,  the  aerodynamic  forces  and 
moments generated by the blade elements can be calculated. 
Lift and drag force and pitching moment at quarter-chord generated by an arbitrary element of the rotor 
blade of width dr are shown in their standard formulations :

Lifting force is perpendicular to the direction of inflow velocity and drag force vector is perpendicular 
to the vector of lift force. Local values of inflow angle and angle of attack have to be used to obtain 
forcing moments of the blade. Elementary rotor thrust and in-plane force (frequently called H-force) 
are defined by the following equations :

Numerical integration has to be used in an aerodynamic model based on the blade element method. 
This approach is both simple and accurate, especially if a high number of span-wise elements is used. 
Hence numerical integration is especially useful in computer-aided modelling of rotor aerodynamics. 
Arbitrary span-wise distributions of blade properties and flow conditions can easily be captured and the 
full form of blade aerodynamic equations can also be used. 
Using numerical integration, aerodynamic forcing moments can be expressed in a form that can be used 
for a blade element model of an auto rotating rotor (i=1, N elem) :
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Rotor pitching moment and rotor rolling moment are defined as follows :

Blade aerodynamic forcing moments derived with the aid of analytical integration (i.e. homogeneous 
span-wise distributions of blade geometry and aerodynamic properties are assumed) are :

the equations can be used in a simplified analytical model of auto rotating rotor blade aerodynamics 
and are also essential for linear stability analysis of rotor blades. 

6. Blade Motion Computational Analysis

The mathematical structural blade model and the software is written by Bruno Zilli. 
The finite element method represents a numerical method that is by far most popular in the field of  
structural  dynamics  and  statics.  Individual  element  matrices  and  the  forcing  vectors  have  to  be 
assembled into the global matrices and the global forcing vector. 

If time-marching simulation is used, structure global coordinates and their first time derivatives (i.e.  
deflections  and  rates)  that  were  computed  in  the  previous  time  step  are  used  for  calculation  of 
corresponding accelerations. 

If the system of equations of motion is linearized around the rotor speed,  it can be written in a matrix 
form. 

[M]{q''} + [C]{q'} + [K]{q} = [A]{q'} + [B]{q} 

Here below is the software flow chart. Inria-Scilab has been chosen as a general developing platform 
because it's a free, well tested and open-source.
The software written by the author is available on this web page. Anyone is welcome to try to modify, 
test or change the software in order to achieve better results. 
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Here below are some results. A blade-flapping motion was simulated. The values are:
Blade length = 0,5 m
Blade rev speed = 290 rev/min
Autogyro weight = 10 N
Autogyro forward speed = 10 m/s
Blade profile = NACA 8H12
Blade materials = Balsa + 2 carb strips
Blade weight on the tip = 10 g
Blade flexible hinge at the root = polymer flexible hinge

An integration step of 0,001 s (integration step every 1,74° at 290 rev/min) has been used and the 
simulation for 90° of rotation, starting from 0° by the usual angle counting way (x axis).

The blade inertia values (carbon-balsa cross section) have been calculated by a fem analysis using 
code_aster, the EDF open source certified, powerful and free software. Files are available on this web 
page.

Blade general arrangement

Blade  fem 
analysis for cross section inertia values calculation
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Blade motion for the first 90° starting by 0° (horizontal x-axis).  The five curves are the positions of 
five points on the blade, by the increasing radial distance to the blade tip. The blade lifts by forwarding.

Here below is the induced inflow velocity. By using the right flexible hinge arrangement and a right 
sized flexible blade and weight, a good distribution of the induced inflow velocity has been obtained.
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For a quick check of the results, the average coning angle b0 obtained from the software results is:

from an approximate usefully evaluation of the trusting and centrifugal forces, we have:

A difference of 5% approximatively is a good result for such kinds of applications.

7. Flapping Hinge Offset and Flexible Hinge-less Rotors

Consider  an  articulated  rotor  with  the  flap  hinge  offset  from the  center  of  rotation  by  a  distance 
eR=0.04-0.05 R, as the figure above. It has a simpler mechanical construction than the other with no 
offset, and it has a favorable influence on the helicopter handling qualities, because it produces a flap 
pulsation above Ω . For a no hinge spring blade, the result is:

Where rcg is the blade CG distance from the hinge; mblade is the blade mass. Iblade is the moment of inertia 
about the flap hinge. Typically Ωe > Ω about ν = 1.02-1.04 and this is good for increased rotor stability.

We're now introducing the lock number, that is: 

a is the airfoil lift curve slope, and ρ is the air density. 

γ is a dimensionless parameter representing the ratio of aerodynamic forces to inertial forces. Typically 
γ ≈ 8-10 for articulated rotors.

Ing. Bruno Zilli 38-53

Ωe
2
=Ω2

[1
e rCG mblade

I blade

]

γ=
ρacR4

I B

b0=arctan 
0.083m
0.5m

=9.42 °

b0=

10 N ,weight
3blades

0.065kg∗302
∗0.25m0.01kg∗302

∗0.5m
=9.87 °



R.C.A. aerodynamic design a.s.d G.A.S.T. - Casarsa della Delizia (PN) - Italy

Consider an articulated rotor blade with no hinge offset from the center of rotation, but now with a 
spring acting on the blade that produces a restoring moment of the blade itself.

      

It is assumed that the blade motion still consists of only rigid rotation about the flap hinge, so that the  
out-of-plane deflection is z = rβ.

The spring stiffness which might be used on a rotor blade would be small compared to the centrifugal 
stiffening,  however,  so  the  rigid  flapping assumption  is  reasonable.  With  rigid  flapping motion,  it 
follows that the equations for the rotor forces and power are unchanged. The hinge spring does change 
the rotor flapping motion, since it introduces an additional flap moment. Because the spring moment is  
proportional to the flapping displacement relative to the shaft, the hub plane is the appropriate reference 
plane in this case.

Being Kβ   [Nm] the spring rate and βp the static angle, we assume the  Kβ  = 0 for βp. The flapping 
equation become:

or

The dimensionless natural flap frequency of the rotating frame is: 
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For practical flap springs, ν will be just slightly greater than one. When  ν>1, the aerodynamic forces 
acting at 1/rev (dimensionless Ω) are no longer forcing the flap motion exactly at resonance (ν=1).
Thus  the  rotor  responds  to  this  periodic  excitation  with  a  reduced  magnitude  and  reduced  phase 
proportional to:

Increasing the flap frequency so that periodically the system is forced below resonance slightly reduces 
the amplitude of flap response to cyclic excitation, and most important reduces the lag in the response. 
For example, when  ν = 1.15 and γ=8, the amplitude  is reduced only about  5%, but the lag becomes 
72° instead of 90° for an articulated rotor. 

Example: how to build a flexible hub.

Here above on the left is a general scheme about a flexible hub invented by the soviets A. Tatarnikov 
and  O.  Polyntsev.  The rotor  consists  of  two blades  attached  to  the  hub,  which  incorporates  three 
flapping hinges and flexible  beams, restricting individual  flapping of the blades.  There's  a general 
arrangement on the right.

Here below are some arrangements for a r.c. autogyro model flexible hub.
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8. Delta Hub Rotor

Pitch-flap coupling is a kinematic feedback of the flapping displacement to the blade pitch motion, that 
may be described by Δθ = -Kp β. For positive pitch-flap motion coupling (Kp > 0). flap up decreases the 
blade pitch and hence the blade angle of attack.
The resulting lift reduction produces a change in flap moments that opposes the original flap motion. 
Thus positive pitch-flap coupling acts as an aerodynamic spring on the flap motion. Pitch-flap coupling 
may be obtained entirely by mechanical means. The simplest approach is to skew the flap hinge by an 
angle universally called δ3, so that it's no longer perpendicular to the radial axis of the blade.

Then a rotation around the hinge with a flap angle β must also produce a pitch change of -β tan δ3. The 
feedback gain for this arrangement is therefore Kp = tan  δ3. Pitch-flap coupling is usually defined in 
terms  of  the  delta-three  angle.  Note  that  positive  coupling   δ3 >  0  represents  negative  feedback, 
decreasing the blade pitch for a flap increase. Pitch-flap coupling can also be introduced by the control 
system geometry. When the pitch bearing is outboard of the flap hinge, the blade will experience a 
pitch change due to flapping if the pitch link is not in line with with the axis of flap hinge.
For a fixed swash plate position, the flap motion can be viewed as occurring around a virtual hinge axis 
joining the end half the pitch horn and the actual flap hinge. The  δ3 angle then is the angle between this 
virtual hinge axis and the real flap hinge axis.
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Thus  pitch-flap  coupling  introduces  an  aerodynamic  spring  that  increases  the  effective  natural 
frequency of the flap motion to:

The magnitude and phase of the tip-path-plane response to cyclic becomes:

Here below are some pictures of the delta hub construction.
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9. Rotor Stability

We analyze the rotor flutter  stability in particular the pitch flap motion of the blade.  The classical 
problem considers two degrees of freedom, the rigid flap and the rigid pitch of an articulated rotor 
blade. The rotation of the wing introduces a number of effects that make blade flutter much different 
from the fixed wing phenomenon.

We define MF and Mf the aerodynamic flap and pitch moments;

 the blade lock number;

I β=∫ ηβ
2 mdr where ηβ is mode shape of fundamental flap model. For a hinge offset e, we have 

ηβ=
r−e
1−e

and normalized to 1 at the tip;

I b=∫mr2 dr is the characteristic inertia of the rotor blade or the inertia flapping moment;

I β
°
=

I β

I b

I x=∫ xI mr dr inertial flap-pitch coupling, and xI the chordwise offset of blade center of gravity 
     behind the pitch axis;
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I f=∫ I θ dr Blade  pitch  inertia,  where  Iθ is  the  section  moment  of  inertia  with  respect  to  the 
feathering axis;

I x
°
=

I x

I b

I f
°
=

I f

I b

I”
x , I”

f and I”
β are dimensionless quantities and the integrals are from 0 to 1.

The differential equation of the rigid flap and rigid pitch motion of a rotor blade are:

Here β is the degree of freedom of perturbation flap motion, with rotating natural frequency νβ and θ is 
the pitch degree of freedom, with non rotating frequency ωθ.

The flap moment MF and the pitch moment Mf are expressed as coefficients (hovering). C(ke) is the 
wake lift deficiency function and we can set it as 1 for model tasks:

xA is the distance the aerodynamic center is behind the feathering axis as visible above.
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The coupled differential equations for the flap and pitch motion are thus:

In hovering the aerodynamic coefficients are constants, no forcing terms are considered for the stability 
analysis. In Laplace domain (s=α+iω) we have:

The eigenvalues are the roots ωθ  of the characteristic equation det [A] = 0. A plane of the system 
parameters has regions in which all the roots have negative real parts, so that the motion is stable; and 
regions in which one or more roots have positive real parts, so that the motion is unstable. There are 
two ways a root can cross the imaginary axis into the right half plane, producing an unstable system: as 
a real root along the real axis, and as a complex conjugate pair at finite frequency.
The instability associated with the real root going through the origin into the right half plane is called 
divergence. It's  a static instability,  since with zero frequency no velocity or acceleration forces are 
involved. The instability associated with a complex conjugate pair of roots crossing the imaginary 
axis is called flutter. This instability involves an oscillatory motion of the system.

The motion significant parameters for the rotor blade flutter stability are the pitch natural frequency 
ωθ, determined by the system stiffness; and offsets of the center of gravity and aerodynamic center from 
the reaction axis.

The separation of the center of gravity and aerodynamic center (xI – xA) is more important than 
their distance from the reaction axis, but xA must be kept small to avoid large oscillatory loads in 
forward flight. Typically xA = 0.   Thus the principal parameters controlling the blade flutter 
stability are the pitch stiffness (ωθ) and the chordwise mass balance (xI).

Using I x
°
≈

3
2

x I the condition for avoiding the static divergence is:

which shows that the divergence depends on the distance the center of gravity is aft of the aerodynamic 
center (xI – xA). The boundary is relatively insensitive to the pitch axis (reaction) location for a fixed (x I 

– xA), even xA = 0 is commonly used .  Having (xI – xA) < 0 by setting the blade center of gravity 
ahead the aerodynamic center is a condition for the assured divergence stability, regardless of 
pitch stiffness (ωθ).

Ing. Bruno Zilli 46-53

[ I β
°

−I x
°

−I x
° I β

° ]
¨

〈 β
θ 〉 [−γM β̇ −γM θ̇

−γm β̇ −γmθ̇ ]
˙

〈 β
θ 〉[ I β

° ν β
2
−γM β −I x

°
−γMθ

−I x
°
K p I f

° ωθ
2
−γmβ I f

°
ωθ

2
1−γmθ

]〈 β
θ 〉=0

[A ]〈βθ 〉=[ I β
° s2

−γM β̇ sI β
° νβ

2
−γM β −I x

° s2
−γM θ̇ s−I x

°
−γM θ

−I x
° s2

−γmβ̇−I x
°
K p I f

° ωθ
2
−γmβ I f

° s2
−γmθ̇ s I f

°
ωθ

2
1−γmθ

]〈 β
θ 〉 =0

x I−
8ν β

2

9
x A

16
3γ

νβ
2 I f

°
ωθ

2
1

γc2

96


2
3

K p I f
° ωθ

2



R.C.A. aerodynamic design a.s.d G.A.S.T. - Casarsa della Delizia (PN) - Italy

A flutter instability occurs when a pair of complex conjugate roots cross the imaginary axis into the 
right plane. The flutter stability boundary is thus defined by the requirement that the one root is on the 
imaginary axis, s=iω, where ω is a real and positive frequency.
On substituting  s=iω in the characteristic equation det [A] = 0, we obtain two equations (Re and Im). 
Eliminating ω2 from the two equations we have a single relation defining the flutter boundary in terms 
of blade parameters. The criterion for flutter stability can be written as:

On the plane  ωθ
2 vs. Ix/If the flutter stability boundary is a hyperbola.

The minimum I°
x on the flutter hyperbola occurs at:

With articulated rotors, and I° x ≈ (3/2) xI it is:

Consequently, if the blade is mass balanced in such a way that the center of gravity is no farther 
aft than this distance, flutter stability is assured regardless of the pitch stiffness (ωθ).
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10. Vehicle stability

In this chapter a study is reported on the model longitudinal stability by investigating the equations of 
motion. The balance momentum and angular momentum equations have been written in the model CG.

In particular, for the pitch degree of freedom θ the angular momentum balance equation written on the 
model center of mass gives (cos α ≈ 1) :

For  θ increasing from zero, Ft is downward because the tail profile is a simple plate. So it's the sign 
minus sign in the angular momentum balance equation.

by using the Glauert's theory, it is:
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Ft is the tail total circulatory lift plus the so called added mass effect (ρ is the air density). Simplifying 
for model tasks it is: 

U is the model horizontal speed, St is the tail surface and lt the tail length.  The tail chord c has been 
considered as constant.

The momentum balance equation written on the model C.G. is:

by using the Glauert's theory, and for small angles of rotor incidence, we have:

It is more useful organizing the equations in a matrix form:

For the stability analysis it's useful considering the equations without forcing terms. The solutions are 
in the form :

where s = =α+iω are complex numbers.
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By substituting the general solutions in the motion equations,  simplifying and equating to zero,  or 
directly doing the equations L-transformation, it is :

So it has non trivial solutions by equating to zero the determinant and finding s:

By the use of Scilab-Inria, are calculated the s-polynomial roots. This second software written by the 
author is very simple, because Scilab has already been organized for such kind of task.

After a first trial, the eigenvalues calculated are:

  lambda_#1 =    0                          (it's a semi-definite system)    
  lambda_#2 = - 0.0480716                      (non periodic motion)
  lambda_#3 = - 18.080609 + 54.358677i  (damped vibration)
  lambda_#4 = - 18.080609 - 54.358677i   (damped vibration)

The real parts of the complex ones are negative, so the vehicle is stable with the tail action. The fact 
that if the tail surface is very small is intresting (just for a trial set it as 0.005 m 2), the real parts of the 
complexes ones become very close to zero. The autogyro needs a tail!

Ing. Bruno Zilli 50-53
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W I T H  M O D E R N  PHILADELPHIA FOR  A  B A C K G R O U N D  AN  A U T O G I R O  OVER  
THE  M I D - T O W N  SECTION - 1930

TWO AUTOGIROS OVER LOWER M A N H A T T A N, NEW YORK 1930
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A CLOSE-UP OF THE AUTOGIRO ROTOR HEAD 

JUAN DE LA CIERVA, INVENTOR OF THE AUTOGIRO. 
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